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Saction 24.1 Binomial Probabllities 517

would be. described by the binomial distribution (sometimes referred to as the “Bernoulli
distribution™*). Let us now examine binomial probabilities.

24.] BINOMIAL PROBABILITIES

Consider a population consisting of two categories, where p is the proportion of indi-
viduals in one of the categories and ¢ == 1 — p is the proportion: in the other. Then the
probability of selecting at random from this population 8 member of the first category is
p, and the probability of selecting a member of the second category is g.t
Por example, let ns say we have a population of female and male animals, in
proportions of p = 0.4 and g = 0.6, respectively, and we take a random sample of
two individuals from the population. The probability of the first being a female is p
(i.e., 0.4) and the probability of the second being a female is also p. As the probability
of two mutnally exclusive events both occurring is the product of the probabilities of the
- two separate events (Section 5.7), the probability of having two females in a sample of
two is (p)(p) = p® == 0.16; the probability of the sample of two consisting of two males
is (g)(g) = ¢* = 0.36.

‘What is the probability of the sample of two consisting of one male and one female?
This could occur by the first individual being a female and the second a male (with a
probability of pg) or by the first being a male and the second a female (which would occur
with a probability of gp). The probability of either of two mutually exclusive outcomes
is the sum of the probabilities of each outcome (Section 5.6), so the probability of one
female and one male in the sample is pg + gp = 2pg = 2(0.4)(0.6) = 0.48. Note that
0.16 + 0.36 + 0.48 = 1.00.

Now consider another sample from this population, one where n = 3. The prob-
ability of all three individuals being female is ppp = p* = {0.4)> = 0.064. The
probability of two females and one male is ppg {(for a sequence of 2 23) + pgp
Hor 23 %9) + gpp (for 32 9), or 3p?g = 3(0.42(0.6) = 0.288. The probabil-
ity of one fermale and two males is pgqg (for 23 3) + gpg (for 3 23) + qqp (for
83 %), or 3pg? = 30.4)(0.6)2 = 0.432. And, finally, the probability of all three
bei_ng males is qqgq = q3 = (0,6)3 = 0.216. Note that P3 -+ szq -+ 3Pq2 + q3 =
0.064 + 0.288 + 0.432 + 0.216 == 1.000 (meaning that there is a 100% probability—that
i, it is certain—-that the three animals will be in one of these three combinations of sexes).

*The binomial formula discussed in the following section was first described in 1676 by Sir Isaac Newton
(1642~1727), the great English scientist and mathematician; and its Brst proof, for positive integer exponents,

_a 1713 publication (Cajori, 1954), Each observed event from a binomial distribution s sometimes called a
" “Bernoulli wrial,” David (1995) ascribes the first use of the term “binomial distribution” to G. U. Yile, in 1911,

from the population and then is returned to the poptlation before the next membar of the sample is selected.
Sampling without replacement is discussed in Section 24.2. If the population is very large compared to the
size: of the sample, then sampling with and without replacement are indistinguishable in practice.
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518 More on Dichatomous Variabies Chapter 24

If we performed the same exercise with n = 4, we would find that the probabitity
of four females is p* = (0.4)* = 0.0256, the probubility of three females (and one male)
is 4p3g = 4(0.4)3(0.6) = 0.1536, the probability of two females is 6 p2g? = 0.3456, the
probability of one female is 4pg® = 0.3456, and the probability of no females (i.e., all
four are male) is g¢ = 0.1296. (The sum of these five terms is 1.0000, a good arithmetic
check.) . - .

If a random sample of size n is taken from a binomial population, then the prob-
ability of X individuals being in one category (and, therefore, n — X individuals in the
second category) is

P(X) = (;) pXgr—X, (24.1)

In this equation, pXg"~* refers to the probability of sample consisting of X items, each
having a probability of p, and » — X items, each with probability g. The binomial

coefficient,
(n) _ n! )
X/ Xin-X)t" | (24.2)

is the number of ways X items of one kind camn be arranged with » — X items of a
second kind, or, in other words, the number of possible combinations of n items divided
into one group of X items and a second group of n — X items. (See Section 5.3 for a
discussion of combinations; Equation 5.3 explained the factorial notation, “{”.) Therefore,
Equation 24.1 can be written as :

X

P(X) = g™ x. (24.3)

n!
Xi(n— X%

Thus, {3)p*q*~% is the Xth term in the expansion of (p + ¢)"”, and Table 24.1
shows this expansion for powers up through 6. Note that for any power, n, the sum of -
the two exponents in any term is #. Furthermore, the first term will always be p”, the
second will always contain p*~'g, the third will always contain p"~2g?, etc., with the
last term always being ¢”. The sum of all the terms in a binomial expansion will always.
belO, for p+g=1,and (p+g)y* =1"= 1L )

As for the coefficients of these terms in the binomial expansion, the X'th term of the .
nth power expansion can be calculated by Equation 24.3. Furthermore, the examination.
of these coefficients as shown in Table 24.2 has been deemed interesting for centuries.

TABLE 24.1 Expansion of the Binomial, {p + q)”

o+

X

Pz'" q

P2 +2pg + g%

P +3Pq+3pat 4+ q°

#*+4piq +6piq* +4pq® + q°

p° 4+ 5p%q + 10p?q? + 10p%g® 4 Spg* + ¢°

pS +6p5g +15p*g2 +20p%g? + 15p%g* + 6pg® — 45

b W
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Section 24.1 Binomial Probabilities 519

TABLE 24.2 Binomial Coefficient, nCx

n X=0 1 2 3 4 5 [ 7 8 9 10 Sum of coefficients
1 1 1 2 =2
2 1 2 1 4 =22
3 1 3 3 1 8 = 2*
4 1 4 6 4 t , 16 = 2¢
5 1 5 10 10 5 1 32 =29
6 1 6 15 20 158 6 1 64 =26
7 1 7 21 3% 35 21 7 1 128 = 27
8 1 8 28 5 70 56 28 g 1 . 256 = 28
9 1 9 36 84 126 126 B4 36 9 1 512 =27

10 1 10 45 120 210 252 210 120 45 10 1 1024 = 210

This arrangement is known as Pascal’s triangle.® We can see from this trangular array
that any binomial coefficient is the sum of two coefficients on the line above it, namely,

(;:) = (;::11) + (n x 1)' : (24.4)

This can be more readily observed if we display the triangular array as follows:

i
1 1
i 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 3 1

Also note that the sum of all coefficients for the nth power binomial expansion is 27.
Appendix Table B.26a presents binomial coefficients for much larger n’s and X’s, and -
they will be found useful later in this chapter.

Thus, we can calculate probabilities of category frequencies occurring in random
samples from binomial population. If, for example, a sample of five (i.e., n = 5) is taken
from a population composed of 50% males and 50% females (i.e., p = 0.5 and g = 0.5)
then Example 24.1 shows how Equation 24.3 is used to determine the probability of
the sample containing 0 males, 1 male, 2 males, 3 males, 4 males, and 5 males. These

*Blaise Pascal (1623-1662), French mathematician and physicist and one of the founders of probability
- theory {in 1654, immediately before abandoning mathematics to become a religious recluse). He had his
triangular binomial coefficient derivation published in 1665, although knowledge of the triangular properties
appoats in Chinese writings a8 early as 1303 (Cajori, 1954; David, 1962; Struik, 1967: 79). Pascal algo
invented (at age 19) a mechanical adding and subtracting machine which, though patented in 1649, proved too
expensive to be practical to construct (Asimoy, 1982: 130-131). His significant contributions to the study of
fluid pressures have been honored by naming the international unit of pressuce the pascal, which is a pressure of
one newton per square meter (where a newton——aamed for Sir Isaac Newton—is the unit of force representing
a one-kilogram mass accelerating at the rate of one meter per second per second). Pascal is also the name
given to a modern computer 1anguage. The relstionship of Pascal's triangle t0 5 Cx was first published in 1685
by the English mathematician, John Wallis (1616-1703) (David, 1962: 123—124).
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probabilities are found to be 0.03125, 0.15625, 0.31250, 0.31250, 0.15625, and 0.03125,
respectively. This enabies us to state that if we took 100 random samples of five animals
- each from the population, about three of the sample [i.e., (0.03125}(100) = 3.125 of
s them] would be expected to contain all females, about sixteen [i.e., (0.15625)(100) =
' 15.625] to contain one male and four females, thirty-one fi.e., (0.31250)(100)] to consist
of two males and three females, etc. If we took 1400 random samples of five, then
= 43.75 [i.e., about 44] of them would be expected to contain all -
fermnates, etc. Figure 24.1a shows graphically the binomial distribution for p = g = 0.5,
for n = '3. Note, from Fig 24.1a and Example 24.1, that when p
distribution is symmetrical [i.e., P(0) = P(n), P(1) = P(n—1), etc.], and Equation 24.3

(0.03125)(1400)

becomes

Appendix Table B.2Gb gives binomial probabilities for n = 2 to n = 20, for p = 0.5.
Example 24.2 presents the calculation of binomial probabilities for the case where
1 =03 = 0.7. Thus, if one were sampling a population
consisting of 30% males and 70% females, 0.16807 (i.e., 16.807%) of the samples.
would be expected to contain no males, 0.36015 to contain one male and four females,
etc. Fig. 24.1b presents this binomial distribution graplucally, whereas Fig. 24.1c shows

= 5, p =03, and g =

More on Dichotomous Variables

P ca—ys
X = Fim—o1

the distribution where p = 0.1 and q = 0.9.

For calculating binomial probabilities for large n, it is often convenient to employ
logarithms. For this reason, Appendix Table B.40, a table of logarithms of factorials, is
provided. Alternatively, it is useful to note that the denominator of Equation 24.3 cancels
out much of the numerator, so that it is possible to simplify the computation of P(X),

= g = 0.5 the

Chapter 24

(24..5)

EXAMPLE 24.1 Computing binomial probabilities, P{X ), where n = 5, p = 0.5, and g = 0.5

(following Equation 24.3).

X

. 2!3!

£(X)
mss = (0.59)(0.5%) = (1)(1.0)(0.03125) = 0.03125
1141 e (0.51)(0.5%) = (5)(0.5)(0.0625) = 0.15625
=——(0.5%)(0.5%) = (10)(0.25)(0.125) = 0.31250
312! - (0.5%)(0.5%) = (103(0.125)(0.25) = 0.31250
ji! (0.5*3(0.5") = (5)(0.0625)(0.5) = 0.15625
smr = (0.5°)(0.5%) = (1)(0.03125)(1.0) = 0.03125
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@

Figure 24.1 The binomial disteibution, for n = 5. (8} p = g = 0.5. () p = 0.3,
¢ = 0.7. (¢) p = 0.1, ¢ = 0.9. Theae graphs were drawn utilizing the proportions given
by Equation 24.1,

especially in the tails of the distribution (i.e., for low X and for high X), as shown in
Example 24.3. If p is very small, then the use of the Poisson distribution (Section 25.1),
should be considered.*

The mean of a binomial distribution of counts X, is

hx =np, . : (24.6)
the variance! is
o% = npgq, (24.8)
and the standard deviation of X is
ox = ./hpq. (24.9)

*Raff (1956) and Molensar (1969a, 1969b) discuss several approximations to the binomial distribution,
including the normal and Poisson distibutions.

tA measure of syrometry (see Section 6.1) for a binomial distribution is
a—r
~neq

30 it can be seen that y; = 0 only when p = ¢ = 0.05, 3y > O implies a distribution skewed ta the right (as
in Pigs. 24.1b and 24,1¢) and | =< 0 indicates a distribution skewed to the left.

Y1 = 24.7)
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EXAMPLE 24,2 Computing binomial probabilities, P(X ), where n = 5§, p= 0.4, g =07 (l'ollow-

ing Equation 24.3),

P(X)

0151 — (0.3%)(0.7%) = (1)(1.0)(0.16807) = 0.16807

“4! —(0.3")(0.7%) = (5)(0.3)(0.2401) = 0.36015

2!31 = (0.32)(0.7%) = (10)(0.09)(0.343) = 0.30870
51

312[ ——(0.3*)(0.7%) = (10)(0.027)(0.49) = 0.13230

4111 = (0.3%)(0.7Y) = (5)(0.0081)(0.7) = 0.02835

sm = (0.3%)(0.7%) = (1)(0.00243)(1.0) = 0.00243

EXAMPLE 24.3 Computing binomial probabliities, P(X), with n = 400, p = 0.02, and g = 0.98.
‘(Many calculators can operate with large powers of numbers; otherwise, logarfthms may be used.)

>4 £(X)
— Bl 5950 = g = 0.98%° — 0.000
° o= mif q . 00031
! 1:(nn-]— 1L "™ = npg"~! = (400)(0.02)(0.98°%) = 0.00253
n! 2 3D i | (A00)399) o s 0 083y — 0.0102
2 S AT = T AT = 5 (0.029(0.98%) = 0.01028
g L BB = DA D) s GO0BINEIB) ) 03 1907
3 TP =—— S T (0.02%)(0.98%7)
=0.02784
and so on,

Thus, if we have a binomially distributed population where p (e.g., the proportion of
males) = 0.5 and g {(e.g., the proportion of females) = 0.5 and we tzke ten samples from
that papulation, the mean of the ten X’s (i.e., the mean number of males per sample)
would be expected to be np = (10)(0.05) = 5 and the standard deviation of the ten X's
would be expected to be /fipg = /(10)(0.5)(0.5) = 1.58. Our concern typically is
with the distribution of the expected probabilities rather than the expected X's, as will’
be explained in Section 24.3.
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